Epigenetic regulation of axonal growth of Drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep.

نویسندگان

  • Sheila K Pirooznia
  • Kellie Chiu
  • May T Chan
  • John E Zimmerman
  • Felice Elefant
چکیده

Tip60 is a histone acetyltransferase (HAT) enzyme that epigenetically regulates genes enriched for neuronal functions through interaction with the amyloid precursor protein (APP) intracellular domain. However, whether Tip60-mediated epigenetic dysregulation affects specific neuronal processes in vivo and contributes to neurodegeneration remains unclear. Here, we show that Tip60 HAT activity mediates axonal growth of the Drosophila pacemaker cells, termed "small ventrolateral neurons" (sLNvs), and their production of the neuropeptide pigment-dispersing factor (PDF) that functions to stabilize Drosophila sleep-wake cycles. Using genetic approaches, we show that loss of Tip60 HAT activity in the presence of the Alzheimer's disease-associated APP affects PDF expression and causes retraction of the sLNv synaptic arbor required for presynaptic release of PDF. Functional consequence of these effects is evidenced by disruption of the sleep-wake cycle in these flies. Notably, overexpression of Tip60 in conjunction with APP rescues these sleep-wake disturbances by inducing overelaboration of the sLNv synaptic terminals and increasing PDF levels, supporting a neuroprotective role for dTip60 in sLNv growth and function under APP-induced neurodegenerative conditions. Our findings reveal a novel mechanism for Tip60 mediated sleep-wake regulation via control of axonal growth and PDF levels within the sLNv-encompassing neural network and provide insight into epigenetic-based regulation of sleep disturbances observed in neurodegenerative diseases like Alzheimer's disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurobiology of Disease Increasing Tip60 HAT Levels Rescues Axonal Transport Defects and Associated Behavioral Phenotypes in a Drosophila Alzheimer’s Disease Model

Axonal transport defects and axonopathy are prominent in early preclinical stages of Alzheimer’s disease (AD), often preceding known disease-related pathology by over a year. As epigenetic transcriptional regulatory mechanisms, such as histone acetylation, are critical for neurogenesis, it is postulated that their misregulation might be linked to early pathophysiological mechanisms that contrib...

متن کامل

Epigenetic control of learning and memory in Drosophila by Tip60 HAT action.

Disruption of epigenetic gene control mechanisms in the brain causes significant cognitive impairment that is a debilitating hallmark of most neurodegenerative disorders, including Alzheimer's disease (AD). Histone acetylation is one of the best characterized of these epigenetic mechanisms that is critical for regulating learning- and memory- associated gene expression profiles, yet the specifi...

متن کامل

Increasing Tip60 HAT levels rescues axonal transport defects and associated behavioral phenotypes in a Drosophila Alzheimer's disease model.

Axonal transport defects and axonopathy are prominent in early preclinical stages of Alzheimer's disease (AD), often preceding known disease-related pathology by over a year. As epigenetic transcriptional regulatory mechanisms, such as histone acetylation, are critical for neurogenesis, it is postulated that their misregulation might be linked to early pathophysiological mechanisms that contrib...

متن کامل

Tip60 HAT Action Mediates Environmental Enrichment Induced Cognitive Restoration

Environmental enrichment (EE) conditions have beneficial effects for reinstating cognitive ability in neuropathological disorders like Alzheimer's disease (AD). While EE benefits involve epigenetic gene control mechanisms that comprise histone acetylation, the histone acetyltransferases (HATs) involved remain largely unknown. Here, we examine a role for Tip60 HAT action in mediating activity- d...

متن کامل

Drosophila Reptin and other TIP60 complex components promote generation of silent chromatin.

Histone acetyltransferase (HAT) complexes have been linked to activation of transcription. Reptin is a subunit of different chromatin-remodeling complexes, including the TIP60 HAT complex. In Drosophila, Reptin also copurifies with the Polycomb group (PcG) complex PRC1, which maintains genes in a transcriptionally silent state. We demonstrate genetic interactions between reptin mutant flies and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 192 4  شماره 

صفحات  -

تاریخ انتشار 2012